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1 DATA ACQUISITION

1.1 Synthetic Scenes
We generated synthetic scenes in blender by placing a point light source
colocated with the camera, and moving them about a unit sphere (Fig. 1).
The projector was implemented as a textured light, and as such does
not exhibit a finite aperture size as with a realistic projector (i.e. depth
of field is infinite). Every synthetic scene had 297 views in total,
split evenly between black flood filled, white flood filled, and random
lollipop patterns being projected (one per view).

Fig. 1: The camera path taken by the camera for synthetic scenes.
Camera locations corresponding to views where the projector shined
lollipop patterns were interpolated from the other views and optimized
over under the assumption they will not be known if a real video was
captured (SfM algorithms have trouble registering such images).

1.2 Real scenes
For real scenes, we acquired 102 view points, for each projecting the
aforementioned patterns.

2 TRAINING DETAIL

All training was done on a RTX A6000 Nvidia GPU, and all opti-
mizations were performed using the same ADAM [4] optimizer with
β = 0.9 and initial learning rate of 0.0005 for 100k iterations, with
2048 samples along each ray. The learning rate was decreased by a
factor of 4 every 10k iterations, but renewed between the three steps
of the optimization described in the main paper. For Ngeo

ϕ , we used
a 8 layer fully connected MLP with width 256, which has a skip con-
nection between its input and the 4th layer. The input is modulated
using positional encoding similarly to NeRF [6] with 8 frequencies
which are powers of 2, and the identity transform. Notice the input is
only a location sample, without direction as in NeRF. This is because
view dependant effects are computed analytically using the BRDF
function. Nmat

ϕ uses the same architecture but 7 frequencies instead
of 8. Nτ

ϕ uses layers of width 128, and 6 frequencies, in addition to
view direction encoded using 5 frequencies (as opposed to the other
outputs, transmittance is a view dependent effect which is not further
processed).

For all scenes, prior to the main training loop we trained an accel-
erated version of a regular NeRF [5] and extracted a 2563 occupancy
grid which was used to accelerate and improve the main training by not
sampling in voxels that are unoccupied.

2.1 Synthetic scenes
For training, we set multiplicative coefficients C(Lx) for the different
loss terms described in the main paper as following: C(Limg) = 1.0,
C(Lτ ) = 1.0, C(Lfog) = 0.01, C(Ln1) = 0.001, C(Ln2) = 0.01,
C(Limg) = 1.0.

for Lfog we set b = 8, and for Limg we found that using a smooth L1
loss improved results (i.e. L2 loss if the absolute element wise error falls
below a threshold, and L1 loss otherwise). We did not use the inverse
square law for synthetic scenes, as the effect was negligible given the
distance of the point light from the scene and its gain coeffecient.

2.2 Real Scenes
For training, we set the same multiplicative coefficients as synthetic
scene, except for C(Lfog) = 0.015.

3 MISCELLANEOUS

3.1 Text to projection
See Fig. 2 for another example of text to projection result.

3.2 Image compensation
See Fig. 3 for additional image compensations results.

3.3 Microfacet
We used the following Microfacet BRDF [7] for all our experiments:

BRDF (l, v, n, a, ρ) = (n · l) · (diffuse(a) + glossy(l, v, n, a, ρ))

diffuse(a) =
a

π

glossy(l, v, n, a, ρ) =
F ·G ·D

4(n · v) · (n · l)
F = 0.04 + (1− 0.04) · (1− l · h)5

G =
(n · l) · (n · v)

(n · v · (1− k) + k) · (n · l · (1− k) + k)

D =
k

π · ((n · h)2 · (k − 1) + 1)2

(1)

where a is surface albedo, l is the light direction, v is the view direction,
n is the surface normal, ρ is the roughness, h is the normalized average
of l and v, and k = ρ4

2
.

To avoid numerical errors, we define ϵ = 1 · (10)−6 and add it to all
denominators, and to all unit vectors prior to normalization. we also
clip the dot products between 0 and 1, under the assumption they are all
facing outwards of the surface (and if not, by definition of a reflectance
distribution function the returned value should be 0).

3.4 Prompts for Fig. 1
The following text prompts were used to create the augmentations in
Fig. 1 of the main paper:

• "A realistic bunny with a leopard pattern on its fur"



User Input Original View Desired View Projection Image Simulated Reprojected

"A beautiful
red pear"

"A beautiful
red pear"

"A beautiful
red pear"

Fig. 2: Multiview text to projection. User Input is a text prompt set by the user per view, the Original Views are rendered using our framework
and together with automatically created masks (inset) sent to CDC [2] for performing content-aware inpainting. After obtaining the Desired
View, an optimization commences which yields a Projection Image best fit for all desired views simultaneously. Simulated shows the resulting
augmentation when the projection image is used in our framework, whereas Reprojected shows the final augmentation when the projection image
is used in the actual scene.

• "A furry rabbit looking like Lola Bunny"

• "A steampunk bunny with metal and brass everywhere"

• "A bunny looking like a white tiger"
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Fig. 3: Image Compensation Results.
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