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1 IMPLEMENTATION DETAILS
1.1 Baseline Pipeline
1.1.1 Calibration. For completeness we mention different failed
attempts to calibrate the LMC and the camera: we tried to directly
triangulate retro reflectors or IR point light sources using the LMC
raw images, and using hand-like objects with known geometry
to imitate the human hand [Guna et al. 2014]. Notably, despite
previous studies reporting good accuracies in calibrating the LMC
with or without other optical devices [Moser and Swan 2016a,b;
Weichert et al. 2013], we did not manage to achieve such results.
The reported joint locations from the LMC API were observed to
be noisy even in the recommended working distance and our final
calibration yielded errors of approximately 5mm in the peripheral
area of the LMC.

1.1.2 Skinning. The mesh we used throughout the paper is a mod-
ified quad-dominant mesh of the LMC open-source repository, and
is not necessarily anatomically correct. The vertex weights per bone
were normalized and the bone associated with the "elbow" joint
was removed, as we observed the LMC predictions for the elbow
are significantly error prone.

1.2 MLS
For the MLS Deformation step, we minimize a similarity transfor-
mation rather than rigid or affine transformations, as it worked best
in practice. We used a discrete grid of size 20x20, spaced evenly per
axis. We used an alpha value of 0.5 from the original paper [Schaefer
et al. 2006], which dictates the deformation effect strength of a point
as a function of distance from a control point. To save computation
time of solving the grid (which happens every frame), we did not
include the proximal interphalangeal joints for this operation, as
they did not effect the deformation in a meaningful way.

1.3 Temporal Filtering
For an illustration of the different approaches for temporal filtering
described in the paper, please see Figure 1.

1.4 Profiling and Comparisons
Our implementation running the full pipeline was profiled upon
5000 frames using NVIDIA Nsight Systems to get a rough idea
of system latency. Results can be seen in Table 1. Entries with an
asterisk (*) are estimated based on hardware specifications given
our settings. The upper part of the table consists of entries directly
effecting the end-to-end latency (i.e. their sum is a rough estimate
of system latency). The bottom part contains information about
operations that happen in parallel. For completeness, we also show
profiling of similar systems proposed by previous studies (taken
directly from the papers). MIDAS [Miyashita et al. 2018] works for
any arbitrary surface, however the type of augmentations are more
limited. We provide rendering times for their tileable textures flow.
Makeup Lamps [Bermano et al. 2017] were specifically designed
for faces, and leverages the high speed capabilities of face trackers
for landmark detection.
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Figure 1: Temporal Filtering. Consider the current time 𝑇 .
The baseline solution involves using the rendered image cre-
ated from 𝑃𝑇 (the LMC frame) directly. If the tracker was
instant, we would use 𝑄𝑇 as target points for 𝑃𝑇 to deform
the render giving us the ideal result. However the tracker is
not instant, and naïvely using the available𝑄𝑇−𝑡𝐿 would lead
to lag and jitter. On the other hand, our filter takes into ac-
count velocity information from previous 𝑃s, and estimates
a relatively accurate 𝑄𝑇 =̃𝑄𝑇 .

1.5 JND User Study
We provide further detail about the modifications made to the
experimental protocol proposed by Peng et al. [2023].

As mentioned before, we do not prerecord videos before (or
during) the experiments. Instead, we synthesize the videos on-
the-fly using the same graphics engine used by the live system,
capable of roughly 920 FPS throughput. This has the large benefit
of not needing to pre-render offline frames for subjects, which
would otherwise be a requirement since the simulated latencies are
adjusted according to their decisions. Furthermore, because we use
the same rendering technique and projector for both the user study
and the live system, this decreases the gap between the experimental
conditions and when an actual hand is presented. On top of this,
the high speed projector reduces blur artifacts, which would occur
if a regular screen or projector were used. Secondly, we set the
starting simulated latency to 20ms instead of 40ms, which is closer
to the expected JND in these scenarios, and reduces overall subject
trials. Finally, we did not choose to use two interleaved sessions
(and averaging their result), as proposed originally to remove some
bias from the experimental results. Instead, we chose to have more
subjects participate and more analysis axis to analyze.

Additionally, prior to conducting the full user study, a small pilot
with 3 subjects was held to validate our experimental setup and
determine some fixed hyper parameters for the full user studywhich
we estimated to have strong effects on the result. This included
the overall simulation speed, the type of projected pattern and the



Table 1: System profiling breakdown.

Casper DPM MIDAS [Miyashita et al. 2018] Makeup Lamps [Bermano et al. 2017]
Step Time [ms] Step Time [ms] Step Time [ms]
Camera Acquisition 1.89* Camera Acquisition 1.98

Full System Latency 9.8 ± 2.1

Camera Frame Upload 0.65 ± 0.22 Camera Frame Upload 0.54 ± 0.03
Skinning 0.34 ± 0.12

Rendering 1.13 ± 0.13MLS Deformation 0.27 ± 0.051
PBR 0.43 ± 0.067
Download Render 1.5 ± 0.23 Download Render 0.38 ± 0.13
Projector Latency 3.0* Projector Latency 3.0
LMC Acquisition 9.1 ± 0.4 -MLS Thread 16.2 ± 1.9

intensity of the ambient lighting present in the simulated scene.
The projector was simulated using conventional projective textures
[Everitt 2001]. Interestingly, we found the projected pattern to have
little to no effect on JND for the 3 subjects in the pilot.

To compute the heatmaps (main paper, Figure 10) out of subjects’
marking, we first find the red disconnected components in the
painting, and calculate their convex hull. Then, a pixel’s final color
in the heatmap is the weighted sum of the paintings from all users,
where the weights are the reciprocal of the number of pixels each
subject painted red. The result is interpolated for pixels missing
a value, and pixels outside of the hand area are masked out. See
Figure 2 for a representative image taken during the user study.

Figure 2: JND User Study. Subjects observed pairs of videos
projected on a diffuse screen that were rendered live using
our graphics engine.

1.6 Guess the Character
See Figure 3 for a reference image showing an example from the
user study.

Figure 3: Guess the Character User Study. An example round
from the user study. A character is projected onto the hand
and users must bend the appropriate finger. The characters
are randomly moved around the finger tips so they may ap-
pear out of sight for a short while.

1.7 Projegraphy
A schematic overview of the projegraphy pipeline is shown in Fig-
ure 4. GPT-4 [Achiam et al. 2023] is utilized initially to identify the
animal, as our research revealed that employing ControlNet [Zhang
et al. 2023] directly with a generic prompt and without a specific
animal name (e.g., "A cute animal"), yields unsatisfactory visual
results. Hyper-parameters for both GPT-4 and ControlNet were
chosen by manually examining the results of a search-grid method
on what we considered the main hyper-parameters. We used the
implementation of ControlNet provided by Mikubill [2023]. The
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"A national geographic photo of a parrot"

GPT-4"This is a picture of a hand gesture.
Which animal is it most similar to?"

ControlNet
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Figure 4: Projegraphy Pipeline. This pipeline generates and projects relevant live content according to the hand gestures,
without any additional user input.

searched hyper-parameters for ControlNet, with their final values
(in parenthesis - secondary less-used configuration), are as follows
- stable diffusion model: "RealVisXL V3.0 Turbo" [SG161222 2023b]
("DreamShaper V8" [Lykon 2023]), prompt: "National Geographic
Wildlife photo of <GPT-4 identified animal>" ("a cute <GPT-4 identi-
fied animal>"), steps: 7 (20), cfg scale: 1.5 (7), width: 512, height: 512,
sampler name: "DPM++ SDE" ("DPM++ 2M"), ControlNet model:
"diffusers_xl_canny_mid" [lllyasviel 2023], ControlNet weight: 2
(1.5), ControlNet guidance end: 1 (0.3). Other configuration pa-
rameters were set to default. Interestingly, the search-grid process
revealed that conditioning with Canny edge image yielded bet-
ter results than other modalities such as depth, open-pose, and
normals and that the stable diffusion model "DreamShaper V8"
[Lykon 2023] outperforms other models such as "RealVisXL V3.0"
[SG161222 2023a], "SDXL Turbo V1.0 fp16" [stabilityai 2023] and
"MeinaMix V11" [meina 2023]. As the input mask doesn’t adhere
to the 1:1 ratio mandated by the stable diffusion model, and given
that the hand-bounding box doesn’t necessarily occupy the major-
ity of the image, the input mask undergoes crop and resize before
inference. Subsequently, the output image undergoes the reverse
process, to match the input mask dimensions and ratio. For GPT-4,
after experimenting with a few prompts, we found that the prompt
that yielded the most reasonable and stable results was "This is a
picture of a hand gesture. Which animal is it most similar to? Return
3 animals by priority in a JSON format (with no explanations).".
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