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A Implementation Details

A.1 ImageNet Zero-Shot Segmentation

To establish fair comparisons, we followed the exact procedure described by Helbling et al. (2025)
using the code from https://github.com/helblazer811/ConceptAttention. We simplify all
categories to a single word, allowing methods conditioned on text to select the corresponding token.
We use the timestep-distilled Flux-Schnell DiT (Labs, 2024) and add Gaussian noise to each of
the images to the normalized timestep t = 0.5, resulting in two backward steps for denoising the
image. We use the last 10 layers of the multi-stream attention blocks. The attention matrices from
all aforementioned layers and timesteps are averaged. For the heads, we use the λ2 weighting for
averaging. For multi-bounce attention, we use the column-select formulation, i.e. we replace A with
Al and transpose as described in Section 4.2 of the paper.

A.2 Linear Probing of TokenRank

We generate attention maps for all layers, heads, and images for the ImageNet (Deng et al., 2009)
subset Imagenette (Howard, 2019) for DINOv1, DINOv2, and CLIP with a VIT/B model. Then, we
compute attention visualizations with column sum, TokenRank, row-selecting the center token, and
row-selecting the CLS token. Finally, we train a linear classifier with the commonly used train and
test split and with the attention visualizations of all layers and heads as input, optimized with the
SGD optimizer with a set of learning rates ({1e− 5, 2e− 5, 5e− 5, 1e− 4, 2e− 4, 5e− 4, 1e− 3}))
for 20 epochs, and we choose the best performing model, similar to Oquab et al. (2023). We resize
and center crop the images to get 905× 905 (901× 901) attention maps for DINOv2 with registers
(other models). We exclude the CLS token column for classification.

A.3 Improving Self Attention Guidance (SAG)

For the SAG experiments, we build on top of the code of (Hong et al., 2023) provided in https:
//github.com/SusungHong/Self-Attention-Guidance. We use SD1.5 (Rombach et al., 2022)
as the foundational model and use the 2nd last decoder block’s last self-attention layer for masking.
We empirically observed it consistently resulted in the best results for both SAG and SAG+TokenRank,
as opposed to the usage of the bottleneck layer in the comparison experiments in the original SAG,
which is in line with the observation by Hong et al. (2023).

We compute the IS (Salimans et al., 2016), FID (Heusel et al., 2017), and KID (Bińkowski et al.,
2018) metrics over 50K generated images, where the ground truth dataset is the LAION-Aesthetics
V2 dataset (Schuhmann et al., 2022) - originally used to train SD1.5. We used the score > 6.5 subset
consisting of 625K images, and filtered it for score > 6.65 and images with width and height larger
than 512, resulting in 72495 raw links, out of which roughly 50K were valid. After truncating to
50K, these images were used for computing the metrics. The selected metrics offer complementary
information in terms of quality (IS) and diversity and resemblance to ground-truth distribution (FID /
KID).

We use the unconditional branch only, and allow up to 40% of the attention matrix to be masked,
following the original implementation.
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A.4 Masking Most Influential Tokens

For all transformers, we do not allow masking the CLS token in our evaluations, as it consistently
ranks as the top most important token for almost all heads and layers, and discarding it yields an
extreme drop in accuracy, which does not allow for comparisons of the alternative approaches. For
the same reason, we also only use the first half of the available attention layers for each model. This
allows for not disturbing the output space too much and as a result accuracy performance degrades
gracefully. Refer to Appendix F.2 for further justification of this choice. Moreover, we mask out
the same number of tokens for all heads simultaneously. For DINO family type, results in the
main paper are averaged over the ViT-B/16, ViT-B/32, ViT-S/16, and ViT-S/32 architectures. For
DINOv2 family type, we use the w/ registers variation, and average over the ViT-B/14, ViT-S/14 and
ViT-L/14 architectures. For both DINO and DINOv2 family types, we use pretrained linear classifier
heads provided with the original publications. We average ViT/B and ViT/L for the transformer
models trained in a supervised way. For CLIP family type, we average over the ViT-B/32, ViT-L/14
and ViT-L/14/336 architectures. We use the template prompt “A photo of a <class>" to compute
per-class text features. Then, we compute a dot-product with the image features and these per-class
features to determine the classification result. Masking is performed by setting the entire column
corresponding to a token to −∞ prior to softmax. For a more in-depth view of individual model
accuracy degradation, see Appendix F.

B Ablation and Hyperparameters for Zero-Shot Segmentation

See Table 1 for zero-shot ImageNet segmentation results using the same experimental setup as in
the main paper, with different hyper parameter choices. The bottom of Table 1 shows “outgoing
(n = 2)*”, corresponding to the result shown in the main paper, leveraging the 2nd bounce from a
one-hot column vector and utilizing λ2 weighting. “row-select (n = 1)” and “column-select (n = 1)”
are the naive first bounce operation also shown in the main paper. “single-channel” uses the single
channel attention blocks in FLUX rather than the dual-channel blocks. “incoming (n = 2)” uses the
incoming attention formulation of multi-bounce-attention (i.e. 2nd bounce from a one-hot row vector).
“incoming (n = 3)” is the same but with 3 bounces. “outgoing (n = 3)” uses a one-hot column
vector with 3 bounces. “w/o λ2” does not use the weighted λ2 scheme. Notice the performance for
outgoing attention degrades rapidly with more bounces (“outgoing (n = 2)*”, “outgoing (n = 3)”)
compared to incoming attention (“incoming (n = 2)”, “incoming (n = 3)”). This is because for
outgoing attention, the steady-state eventually converges into emphasizing important “hubs”, which
usually tends to be background information. However, in early bounces (n = 1, 2) it out-performs the
incoming attention, and we speculate this is because it captures better the target of this task: we are
interested in finding out which image tokens “attend-to” the text token of interest (i.e. a many-to-one
relationship).

Table 1: ImageNet segmentation. Ablation and hyper-parameter choice.

Method Acc ↑ mIoU ↑ mAP ↑
row-select (n = 1) 73.96 54.65 82.64
column-select (n = 1) 80.55 64.02 87.20
single-channel 69.63 51.73 80.50
incoming (n = 2) 83.73 69.58 93.68
incoming (n = 3) 82.93 68.81 94.01
outgoing (n = 3) 79.25 63.32 89.80
w/o λ2 84.00 70.02 94.28
outgoing (n = 2)* 84.12 70.20 94.29

C Used Compute

The image segmentation experiments with FLUX required around 1500 GPU hours, where one
experiments takes around 50 GPU hours. Extracting all attention map visualizations for the linear
probing experiment and training the linear classifier took around 300 GPU hours. We performed
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around 40 experiments for the masking experiment, where each experiment required around 30 GPU
hours, resulting in around 1200 GPU hours in total. Finally, the SAG experiment took around 1000
GPU hours. In total, we estimate the use of around 4000 GPU hours for the whole study. For all
computations, we used an internal GPU cluster consisting of NVIDIA A40, A100, H100, and RTX
8000 GPUs.

D More Segmentation Results

See Figure 7 for more zero-shot segmentation results on ImageNet with comparisons to the state-of-
the-art work ConceptAttention (Helbling et al., 2025). We argue that our raw segmentation masks
are cleaner and more precise, which can be qualitatively measured by the threshold-agnostic mAP
metric presented in the main paper. Additionally, in Figure 1 we show our multi-bounce attention
can be used for segmenting different parts of an image by setting the initial one-hot vector to the
corresponding text token. The text prompt used to create the image (FLUX-Schnell) was “cute
black cat standing up wearing red boots and a bow tie, photorealistic, masterpiece, macro wildlife
photography, dewy grass, closeup low angle, wildflowers, sun, shadows, depth of field, desaturated,
film grain, low quality”.

Boots Cat Tie

Figure 1: Part segmentation. We can segment different parts of the image by setting the initial
one-hot vector to the corresponding text token.

E Illustration of Bouncing as Consolidation Mechanism

Figure 2 illustrates that iterating over the Markov chain results in an iterative refinement of the map,
consolidating meta-stable states. The steady state eventually visualizes the global incoming attention.
This effect cannot be observed for an input image with random pixels (Figure 2, bottom). Instead, the
Markov chain converges very quickly to a dispersed visualization after one step for a noisy input, as
the attention matrix in not structured. We compute the visualizations by passing the depicted images
through DINOv1 and extracting the attention map in the 9th layer and 3rd head. Then, we compute
the first bounce (n = 1) with a uniform initial vector, the 2nd bounce, and the steady state. The same
effect can be seen in Figure 7, where the second bounce (Ours) is significantly cleaner and better
adheres to the depicted objects compared to the first bounce (Column Select).
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Image n = 1 n = 2 n → ∞

Figure 2: Illustration of bouncing. Bouncing the attention signal sharpens the DINOv1 attention
map for a realistic input image, supporting the existence of meta-stable states. On the contrary, a
random input image results in a fast converging Markov chain, where intermediate bounces to not
differ clearly from the first bounce and disperse rather than cluster. This observation is also reflected
in the second eigenvalues: λ2 = 0.44 for the real image and λ2 = 0.16 for the random image, where
a smaller second eigenvalue corresponds to a faster convergence.

F Additional Results for Masking Most Influential Tokens

F.1 Per-Model Results

In Figure 3 we show the results of performing the most-influential token masking experiment
described in the main paper for individual models. The area-under-curve (AUC) metric in the main
paper is computed over the curves.

F.2 Per-Layer Results

In Figure 4, we show the result of choosing progressively more number of layers to mask for the
most-influential token masking experiment conducted in the main paper. “6 (Ours)” indicates what
we used in the paper. Layers are selected starting from the furthest from the output. The results are
shown for DINOv2 (ViT-S/14) w/ registers over the same dataset used in the main paper. However,
similar trends were observed for all architectures. We opted for masking tokens from only the first
50% of the layers to avoid distorting the output space and a too steep performance drop (which
happens for n > 6), while still having an effect on the classification results for higher token mask
percentage (which does not occur for n < 6).

G λ2 Weighting for Masking Most Influential Tokens Experiment

We performed another token masking experiment similar to the one conducted in of the paper, only
using TokenRank for determining the masking order. In this experiment, we compare using uniform
weights per head (as in main paper), random head weights, and using λ2 weighting. Results can
be seen in Figure 5. Perhaps unsurprisingly, randomly weighting the heads performs better than
uniform weights, as the transformer is more sensitive to individual heads being fully or almost fully
masked out, rather than gradually masking out all heads together. Importantly, results indicate that λ2

weighting can be used for increasing the degradation in accuracy, suggesting it can serve as a useful
tool for determining importance of heads. This was also observed to improve zero-shot segmentation
results (see Appendix B).
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Figure 3: Token masking. Using TokenRank to mask out tokens better degrades performance on
average across multiple architectures and training types.

Linear Probing Experiment Additionally, we also train a linear classifier on top of the TokenRank
vectors (incoming attention) per layer, where we use different weighting schemes for the head
dimension. For this, we first compute the weighting coefficients per head and average using them,
followed by computing TokenRank for the aggregated result. We compare uniform weighting (simple
average), random weighting, and λ2 weighting. Results are presented in Table 2: While random
weighting is significantly worse, λ2 weighting performs better than simple averaging, particularly for
transformers with a well-structured latent space, such as DINOv2 with registers.

Table 2: Linear probing of steady state vectors after aggregating heads. λ2 weighting is better
than uniform weighting.

Method uniform random λ2

CLIP 49.07 44.07 49.07
DINOv1 53.50 47.21 53.55
DINOv2 71.62 50.29 72.36

H More SAG Results

In Figure 6 we show more examplary results comparing vanilla SD1.5 (Rombach et al., 2022), SAG
(Hong et al., 2023) and SAG+TokenRank.
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Figure 4: Layer selection for DINOv2 (ViT-S/14). Numbers indicate the number of attention layers
being masked starting from the closest to the input. Masking fewer layers introduces noise into
measurements, while masking more of them results in a faster drop in accuracy allowing less room
for comparisons. We chose to mask 50% of the layers for all experiments; in this case “6 (Ours)”
variation was used.
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Figure 5: Aggregating heads. We used TokenRank to mask tokens while using different weighting
schemes for the head dimension. λ2 yields a larger drop in accuracy compared to uniform or random
weighting.

I Per-Head TokenRank Visualizations

We show more visualizations for TokenRank, column sum, Center Patch, and CLS token for various
heads and layers in Figure 8 and Figure 9.

J Visualization Across Generation Timesteps

In Figure 10, we show generated image results of using FLUX-Dev with 50 timesteps. We computed
the TokenRank (incoming attention) and average over every 5 consecutive timesteps shown in every
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column (first entries correspond to noisier timesteps, while last entries are more noise-free). The
TokenRank visualizations remain stable through the timestep dimension. It can be observed how
attention maps are getting sharper during the denoising process, illustrating that TokenRank can serve
to visualize and analyze generative models.
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SD1.5 SAG SAG+
TokenRank

Figure 6: Self Attention Guidance. Using TokenRank produces less artifacts and more structured
images.
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Orig. Img. Colum Select ConceptAttention Ours GT Mask

Figure 7: ImageNet Zero-Shot Segmentation. Our results are on par with state of the art Concep-
tAttention (Helbling et al., 2025).
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Figure 8: Per-head visualizations of global incoming attention. We plot for various layers and the
first four heads for DINOv1 (ViT-B/8) with different visualization strategies. Images correspond to
the upper row of Figure 4 in the main paper.
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Figure 9: Per-head visualizations of global incoming attention. We plot visualization for various
layers and the first four heads for DINOv1 (ViT-B/8) with different visualization strategies. Images
correspond to the lower row of Figure 4 in the main paper.
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Figure 10: Timestep Stability. Top: generated images using FLUX-Dev with 50 timesteps. Each
column depicts the TokenRank (incoming attention) for increasingly denoised images during the
diffusion process. Rows correspond to decreasing timesteps.
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