

Attention (as Discrete-Time Markov) Chains

Yotam Erel*, Olaf Dünkel*, Rishabh Dabral, Vladislav Golyanik, Christian Theobalt, Amit H. Bermano *Denotes equal contribution

Motivation: How to visualize attention matrices? ——— Key tokens —— c_n $\frac{\mathbf{Q}\mathbf{K}^T}{\sqrt{d_h}}$ a_{0n} Row select

Metastable states of Markov Chain → Regions where chain remains longer → Bouncing consolidates object information →Attention "remains" in semantically similar regions for the first bounces

X noisy

Complete & clean

Eigenvalues of Markov Chain Bouncing $\mathbf{1}^{\text{st}}$ eigenvalue ($\lambda_1 = 1$): steady state 2^{nd} eigenvalue (λ_2)

→ Tied to the convergence rate

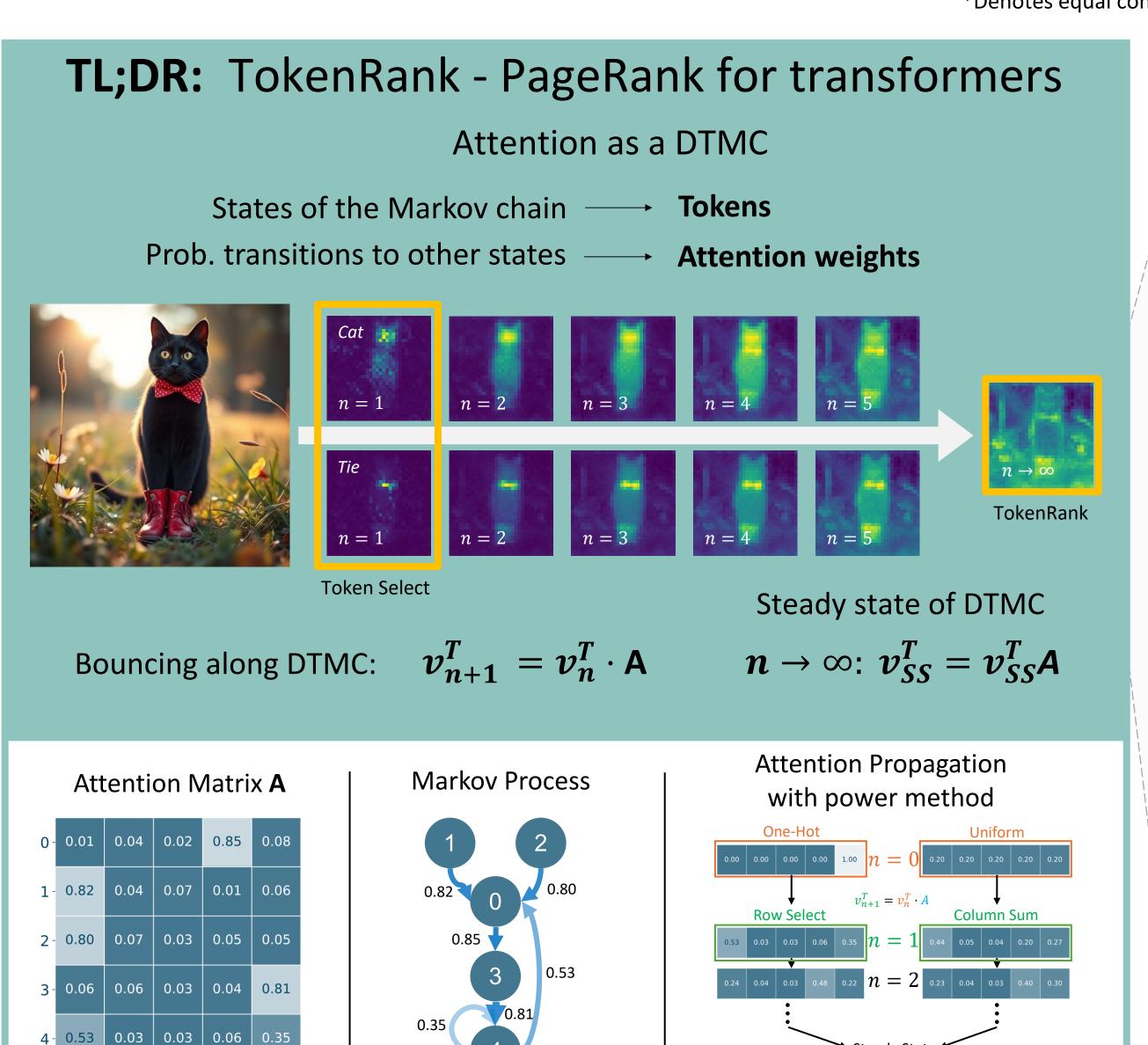
X local

 $\lambda_2 \sim \frac{1}{\text{DTMC convergence rate}}$

 \rightarrow Noisy attention heads have smaller λ_2

References

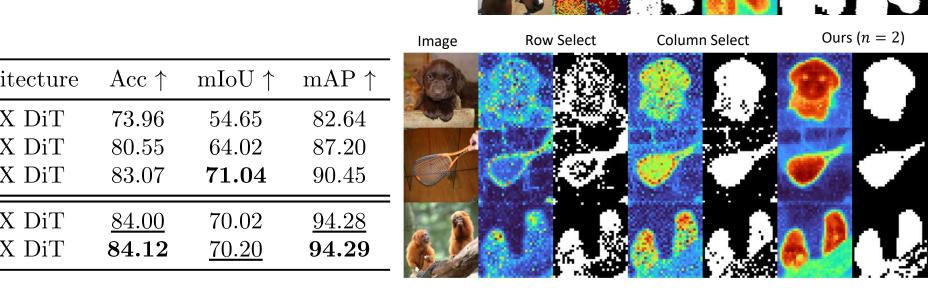
[1] Lawrence Page, et al. The pagerank citation ranking: Bringing order to the web. Technical report, Stanford infolab, 1999. [2] Susung Hong et al. Improving sample quality of diffusion models using self-attention guidance. In ICCV, 2023 [3] Junjiao Tian et al. Diffuse attend and segment: Unsupervised zero-shot segmentation using stable diffusion. In CVPR, 2024. [4] Alec Helbling, Tuna Han Salih Meral, Ben Hoover, Pinar Yanardag, and Duen Horng Chau. Conceptattention: Diffusion transformers learn highly



Zero-shot semantic segmentation with multi-bounce attention

Row Select: <text token> attends to image tokens **Column Select**: Image tokens attend to <text token> Attention bouncing via power method Ours:

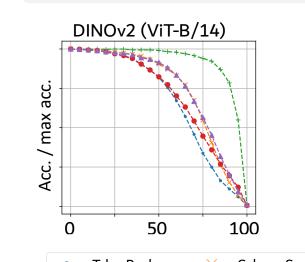
Method	Architecture	Acc ↑	mIoU ↑	mAP ↑
FLUX row-select FLUX column-select Concept Attention	FLUX DiT	73.96	54.65	82.64
	FLUX DiT	80.55	64.02	87.20
	FLUX DiT	83.07	71.04	90.45
Ours w/o λ_2 Ours	FLUX DiT	84.00	70.02	94.28
	FLUX DiT	84.12	70.20	94.29



- > Consolidation of semantic object maps via attention bouncing
- $\rightarrow \lambda_2$ -weighted head averaging improves results by favoring less noisy heads
 - → SOTA for zero-shot semantic segmentation

Experiments with TokenRank Relevance of global token importance

I) Masking Most Influential Tokens



downs

TokenRank for

$\mathrm{AUC}\downarrow$	ViT	CLIP	DINOv1	DINOv2
Rand. Token	0.79	0.80	0.88	0.89
Center Token	0.33	0.47	0.45	0.70
Column Sum	0.27	0.49	0.47	0.71
CLS Token	0.33	0.53	0.56	0.70
TokenRank	0.26	0.46	0.44	0.64

→ Larger Classification drops with TokenRank

II) Self-Attention Guidance with TokenRank

Quantitative Results					
Method	IS ↑	FID ↓	KID ↓		
SD1.5	16.32	45.77	0.018		
SAG SAG+TokenRank	17.69 18.37	52.48 50.14	0.023 0.021		

→ Higher generation quality when refining tokens for important features ranked with TokenRank

III) DiffSeg with TokenRank anchor sampling

Semantic segmentation on COCO-stuff

Method	$\mathrm{mACC}\uparrow$	mIoU ↑
Uniform Grid TokenRank Grid	72.50 84.97	43.60 44.87

- → Anchor sampling based on TokenRank improves DiffSeg
- → More accurate ranking of token importance improves various downstream tasks

Takeaway

Multi-bounce attention improves downstream tasks via attention consolidation and better global token importance