
Exploration of Deep Mesh Denoising

Amir Barda * 1 Mattan Serry * 1 Yotam Erel * 1 Amit H. Bermano 1

Abstract
Polygon meshes are a common representation
of 3D shapes in the domain of computer graph-
ics. Usually, geometry reconstruction technolo-
gies such as depth–sensing cameras, acquire other
representations, mostly voxels and point clouds.
However, in 3D objects modeling, these repre-
sentations are often converted to triangle meshes.
This conversion may be lossy, noisy or occluded.
In this work, we propose a novel approach for
mesh denoising by encoding the local geome-
try of the mesh edges into a similarity–invariant
graph, and applying techniques from recent ad-
vancements in Graph Convolutional Networks to
learn the denoising task.

1. Introduction
1.1. Triangle Meshes

Polygon meshes are an important representation of 3D ob-
jects in computer graphics and geometric modeling. A popu-
lar choice for polygon meshes are triangle meshes, in which
the planes are triangles in a 3D space. Triangle meshes have
the nice trait that each edge has a 1–ring neighborhood of
exactly four edges. A triangle mesh is a graph G = (V,E)
where the vertices V are coordinates in R3 and the edges
E are pairs of vertices that define a topology. Sometimes
a mesh representation includes another set, F , the triplets
of vertices that define triangular faces, yet these can be
computed directly by searching for cycles of length 3 in E.

1.2. Mesh Representation

There are many options to represent a mesh for machine
learning tasks, such as classification and segmentation. The
immediate option is to use the graph representation itself, V
and E, in matrix forms (or A, an adjacency matrix). This
representation is sometimes used in Graph Convolutional
Networks. Some disadvantages of this choice is its large

*Equal contribution 1Tel Aviv University, Blavatnik School of
Computer Science. Correspondence to: <>.

Advanced Machine Learning, Fall ’19, Tel Aviv University, Blavat-
nik School of Computer Science. Copyright 2020 by the authors.

memory consumption, the ordered nature of the matrices,
and the lack of invariance to similarity transformations of
the mesh: translation, rotation, and nonuniform scaling.

1.2.1. SIMILARITY–INVARIANCE

A similarity–invariant compact representation of meshes
was proposed in MeshCNN (Hanocka et al., 2019). In this
representation, every edge borders two faces, and each face
contributes two neighbouring edges. The edge is defined by
five scalars: the dihedral angle between the two faces, two
inner angles and two edge–length ratios for each face.

1.2.2. ROTATION–INVARIANCE

(Yaron Lipman, 2005) introduces a rotation–invariant mesh
representation, based on the Laplacian operator and differen-
tial geometry, which they named Linear Rotation–Invariant
(LRI). The LRI representation calculates a local orthogo-
nal coordinate frame (b1, b2, N) for each edge, where the
normal is the weighted average normal of incident faces.

Ni =

∑
j Aj ·Nj∑
j Aj

(1)

where Aj is the area of a face incident to vertex i and Nj is
the normal of that face.
The b1 direction is the projection of an arbitrary incident
edge to the plane defined by the vertex vi and the normal
(calculate for vi using eq. 1), the b2 direction is defined
to create an orthogonal right hand side coordinate frame.
After all frames are calculated, the per–edge LRI descriptors
can be defined: for each edge, the LRI descriptors are the
differences between the two coincident local frames, as in
eq. 2 . Note that this encodes the local change in geometry,
where smaller differences denote flatter areas in the mesh,
and vice versa. In this form each edge has 2 · 3 · 3 = 18
descriptors: both δij and deltaji contain the difference of
three 3d vectors.

δijb1 = b1i − b1j
δijb2 = b2i − b2j
δijN = Ni −Nj

(2)

This is redundant, as we can fully restore the local frames
using just two of them, because the third is a unit vector
which completes to an orthogonal right–hand side system.

Exploration of Deep Mesh Denoising

Therefore, to reduce the number of parameters representing
a mesh, we implement a reduced form of the LRI descriptors
which contain only the b1 and N frames. This reduces
the number of descriptors for each edge in the mesh to
2 · 2 · 3 = 12.

We can now define the equivalent of the Laplacian (topology–
encoding matrix) over the local frames. Given the vector
of LRI descriptors, we can solve the system using a least
square solution to obtain the full mesh geometry.

2. Method
2.1. Human Segmentation

Out experiments are evaluated on the human body segmen-
tation dataset proposed by (Maron et al., 2017). The dataset
consists of 370 training models from SCAPE (Anguelov
et al., 2005), FAUST (Bogo et al., 2014), MIT (Vlasic et al.,
2008) and Adobe Fuse (ado, 2020), and the test set is 18
models from SHREC07 (Giorgi et al., 2007) humans dataset.
The 3D meshes include humans in various poses, with the
same topological properties: 752 vertices, 2252 edges and
1500 faces. Note The meshes are all manifolds with genus
zero, and no self intersecting faces. This dataset also con-
sists of segmentation data, but we are only concerned with
reconstructing denoised meshes, so the segmentation labels
are discarded. This dataset was selected because we heavily
rely on the consistent topology and properties of the meshes
mentioned. We permit only a fixed size number of edges
as input, and solve the ambiguous neighbour and ordering
problem when the meshes are manifolds as mentioned in
(Hanocka et al., 2019).

2.2. Mesh Preparation

2.2.1. GLOBAL TRANSLATION AND ROTATION

Reconstructing a mesh using the LRI feature representation
requires selecting some arbitrary vertex as the origin, and
an arbitrary global frame of reference. All other vertices
are positioned relative to this origin, and relative to this
frame of reference. This implies that upon reconstructing
the mesh, it will be arbitrarily be translated and rotated. It
follows that determining how good a reconstruction is using
a loss function such as MSE between vertex positions of
the clean and noisy mesh becomes a problem. To counter
this, the first stage of processing a mesh is to extract its
LRI representation, and then reconstruct it. This ensures
the clean mesh and the noisy meshes are positioned and
oriented in the same manner.

2.2.2. GLOBAL SCALING

Let v be the ‖V ‖× 3 array describing vertices V of a mesh.
We define the following operator on v:

δ(v) = 6

√
(det(cov(vT)) (3)

Operator (3) encodes a property of v, such that when di-
viding v by it, the determinant of its co–variance matrix is
exactly unity:

∀v, det(cov(v
T

δ(v)
)) = 1 (4)

We utilize Formula (4) to normalize all meshes’ vertices by
dividing them with δ(v). This enables all of our meshes
to have some shared property of normality. In particular,
it forces global scale invariance. It also has the effect of
decreasing sensitivity to outliers. For example, let mesh
M fit exactly in a unit sphere and let mesh M ′ be a copy
of M , but one of its vertices was wrongly measured and
is extremely far from the mesh. Suppose our method of
normalization was scaling to fit to a unit sphere, then M is
unaffected, but M ′ (which is almost equal to M) would be
extremely down–scaled. In our method, however, assuming
large ‖V ‖, δ(v) is almost unaffected, and the meshes will
remain similar after the normalization. In our experiments,
we used couples of ”clean” and noised meshes for training.
This normalization enabled us to noise all meshes with
the same noise distribution, without worrying that smaller
meshes were more affected by the noise.

2.2.3. NOISE APPLICATION

We applied additive white Gaussian noise (AWGN) with
variance 0.1 for noised meshes and variance 0.01 for tar-
get (relatively clean) meshes. The selection for the noisy
meshes was made by applying the highest variance that was
observed to preserve the integrity of the mesh (almost no
self intersections), and for the target mesh taking a variance
of one order of magnitude smaller. The noise was added to
the vertices positions prior to extracting LRI features.

2.3. Network Architecture

The network architecture we used was a fully convolutional
encoder–decoder style architecture made with the following
convolutional layers filter sizes: 32× 32× 64× 64× 128×
128 × 256 × 256 (encoder), 256 × 256 × 128 × 128 ×
64 × 64 × 32 × 32 (decoder). The individual layers were
re–purposed from the original implementation presented
in (Hanocka et al., 2019), by removing the residual blocks
and the pooling layers, and changing the activation layers
from ReLU to tanh. Instance normalization layers were
used between every stack of identical convolutional layers.

Exploration of Deep Mesh Denoising

Figure 1. A result from the test set when learning to globally denoise a mesh using LRI features. Left: three meshes are presented (from
left to right): 1. The original mesh, 2. the original mesh with color indicating distance of the denoised vertices from it, 3. the denoised
mesh as predicted by the network. Right: This time the prediction is replaced with a randomly noised mesh with same distribution the
network was trained on. The network is observed to perform some sort of smoothing of the noise. Similar results were observed for other
test meshes.

2.4. Evaluation Metric

We chose the Eα evaluation metric to score our results,
which is the average angular error over the entire test set.
It is defined as the dot product between the normals of the
faces in the target mesh and predicted mesh. The Ev metric
is also used to make some conclusions. It is defined as
the mean squared error between vertices positions over the
entire test set.

3. Experiments
3.1. LRI Features Learning

In these experiments, the LRI feature vector representing a
mesh is used both as the data and the label to the network
in a fully supervised fashion. Since we significantly altered
the backbone of our network (Hanocka et al., 2019), the
main goal of learning to denoise a mesh is split into smaller,
simpler tasks that assure the network is creating a faithful
internal representation of our meshes. Each smaller task
reveals insights as to how to approach the next:

• Learning the identity function

• Learning mesh augmentations

• Learning to globally denoise a mesh

3.1.1. IDENTITY FUNCTION LEARNING

As another sanity test, we inserted many meshes (processed
into feature vectors) from the training set with the label
being the feature vector itself: {(x, y)|x = y} where x, y ∈
R|E|×12 since there are twelve features per edge of the mesh.
We wanted to observe how the network behaves when it is
forced to learn the identity function. This is an important
step for the denoising task, since a good starting point to
denoise a mesh would be the original noisy mesh. In other
words, initializing the network weights in later steps such
that identity is returned is very useful.

3.1.2. MESH AUGMENTATIONS LEARNING

In this experiment, we wish to verify to some degree that the
network is able to cope with our augmentation of choice de-
scribed in 2.2.3. This will be advantageous because meshes
derived from real data often include noise and errors for
which our network will be robust against. We create many
noisy meshes from a single clean original mesh, where
”clean” and ”noisy” meshes are created as described in 2.2.3.
Since all target noisy meshes are derived from a single un-
derlying clean mesh, it is easy to see that a well performing
solution in terms of loss minimization would be to output
the original clean mesh. Thus, we tested to what extent can
the network learn to output the original clean mesh, and
if learning converges. The results imply the network has
no problem learning the underlying mesh geometry to a
satisfactory degree, as can be seen in Figure(2). This is no

Exploration of Deep Mesh Denoising

surprise since learning this is equivalent to learning the dis-
tribution of the noise applied to the data, which was shown
to be feasible in many prior works and is a common method
used to reduce over–fitting.

Figure 2. Learning to cope with augmentations. (a) Original mesh
from SHREC. A slightly noised version of it is the target for the
training. (b) Noised mesh, as input to the model. (c) Denoising
result in an early step of the training, no shape features learned yet.
(d) Denoising result in an intermediate step of the training, some
shape features are learned. (e) Denoising result in an advanced
step of the training, shape features are learned and mesh denoising
is visible. (f) Mesh denoising with Laplacian smoothing filter
(Herrmann, 1976) on (b). Fine features like fingers are blurred.

3.1.3. GLOBAL DENOISING LEARNING

Using the insights gathered from the other tests, we de-
signed a training scheme for the entire dataset. Meshes
were fed in batches into the network, each batch consisted
of 8 pairs prepared as discussed in section (2.2), and train-
ing was stopped when validation loss stopped decreasing.
We obtained Eα = 0.00047 on the noisy test set using our
network, while Laplace Smoothing ((Herrmann, 1976)) on
the same noisy set yielded Eα = 0.00050. These results
strengthen the idea that LRI features are minimizing normal
distances better than the classical approach. Visually, the

network seemed to ”smooth” the noise as can be seen in
Fig(1). The results appear heavily distorted in areas of sharp
local changes in the mesh, even when the LRI feature vec-
tors are quite close to the target mesh LRI features. This can
be explained by the fact the LRI features in these areas are
extremely sensitive to small changes. Also, when measur-
ing the MSE on vertex position the networks output doesn’t
seem to be better than the random noisy test set (since LRI
features are less descriptive of this). We therefore concluded
that learning to minimize the MSE on the LRI feature vec-
tors as a representative of the mesh is ultimately not an ideal
choice when solving a global noise task. This method is
also quite constrained by the fact it only allows calculating
a loss that forces a one–to–one mapping between edges in
the clean mesh and edges in the noisy mesh (thereby not
allowing changes in topology at all).

3.2. 3D Vertices Learning

In this experiment we used the vertices positions themselves
as the labels for training instead of the LRI feature vec-
tor representation. The inputs to the network are still LRI
feature vectors, but we reconstruct the mesh as part of the
training process. In other words, The auto–grad tree used
to perform back–propagation included our reconstruction
algorithm (which is differentiable by design). Note this
method offers great benefits over learning directly on LRI
features: it enables us to use other losses which are much
more suitable to describe meshes (see supplementary for
examples). Unfortunately, learning did not converge. The
reason for this might be due to the sheer size of the back–
prop tree that now includes the reconstruction algorithm as
the first step. Our implementation of the LRI reconstruction
uses substantially more operators than normal neural net-
works, and partial derivatives might diminish or suffer from
numerical instability when they finally reach the network
weights in the chain rule.

4. Discussion
The LRI feature vector representation of meshes opens up
new opportunities to explore learning tasks on meshes be-
cause of its unique local properties. Reconstructing the
mesh using the LRI features boils down to solving a least
squares problem which has a closed form solution. This
means that the reconstruction is differentiable, and by using
it, we have demonstrated a neural network can learn to de-
noise an unseen mesh by changing its geometry to fit with a
prior distribution.

In future work, we plan on extending these results for more
elaborated tasks such as mesh super resolution and mesh
generation. These sort of tasks require handling differen-
tiable topology changes by the network and are thus highly
compatible with our method.

Exploration of Deep Mesh Denoising

References
Adobe fuse 3d characters, adobe. 2016. https://www.
mixamo.com, 2020.

Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers,
J., and Davis, J. SCAPE: shape completion and animation
of people. ACM Trans. Graph., 24(3):408–416, 2005.
doi: 10.1145/1073204.1073207. URL https://doi.
org/10.1145/1073204.1073207.

Bogo, F., Romero, J., Loper, M., and Black, M. J. FAUST:
Dataset and evaluation for 3D mesh registration. In Pro-
ceedings IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pp. 3794 –3801, Columbus, Ohio,
USA, June 2014.

Giorgi, D., Biasotti, S., and Paraboschi, L. Shape retrieval
contest 2007: Watertight models track. SHREC competi-
tion, 8(7), 2007.

Hanocka, R., Hertz, A., Fish, N., Giryes, R., Fleishman, S.,
and Cohen-Or, D. Meshcnn: A network with an edge.
ACM Transactions on Graphics (TOG), 38(4):90:1–90:12,
2019.

Herrmann, L. R. Laplacian-isoparametric grid generation
scheme. Journal of the Engineering Mechanics Division,
102(5):749–907, 1976.

Maron, H., Galun, M., Aigerman, N., Trope, M., Dym, N.,
Yumer, E., G Kim, V., and Lipman, Y. Convolutional
neural networks on surfaces via seamless toric covers.
ACM Transactions on Graphics, 36(4):71, 2017.

Vlasic, D., Baran, I., Matusik, W., and Popović, J. Articu-
lated mesh animation from multi-view silhouettes. ACM
Trans. Graph., 27(3):1–9, August 2008. ISSN 0730-
0301. doi: 10.1145/1360612.1360696. URL https:
//doi.org/10.1145/1360612.1360696.

Yaron Lipman, Olga Sorkine, D. L. D. C.-O. Linear rotation-
invariant coordinates for meshes. In Proceedings of ACM
SIGGRAPH 2005, pp. 479–487. ACM Press, 2005.

https://www.mixamo.com
https://www.mixamo.com
https://doi.org/10.1145/1073204.1073207
https://doi.org/10.1145/1073204.1073207
https://doi.org/10.1145/1360612.1360696
https://doi.org/10.1145/1360612.1360696

	Introduction
	Triangle Meshes
	Mesh Representation
	Similarity–Invariance
	Rotation–Invariance

	Method
	Human Segmentation
	Mesh Preparation
	Global Translation and Rotation
	Global Scaling
	Noise Application

	Network Architecture
	Evaluation Metric

	Experiments
	LRI Features Learning
	Identity Function Learning
	Mesh Augmentations Learning
	Global Denoising Learning

	3D Vertices Learning

	Discussion

