
Supplementary for ROAR: Robust
Adaptive Reconstruction of Shapes Using

Planar Projections
1 RECONSTRUCTION IN-THE-WILD IMPLEMENTATION

DETAILS
Throughout our experiments, we use the same hyper parameters
(Section 1.2). We used the coefficients 𝜆1 = 3 and 𝜆2 = 1 (Eq. (2)) for
all shapenet experiments. Our learning rate was set to 5𝑒−2 and we
iterated using Move Vertices (sec. 3.1) for 200 steps. We ran the Face
Collapse block for each iteration, and the Face Split Block each 10
iterations.

1.1 Metrics Calculation
We describe here in detail how the metrics in Table 1 in the main pa-
per were computed. Chamfer 𝐿2: we randomly sample 200k samples
from the surface of the target proportionally to face areas and of the
result, and compute the average bi-directional Euclidian distance
between nearest neighbors. Cosine Similarity: exactly as Chamfer
𝐿2, only we compute the dot product between the nearest neigh-
bors’ normals. Triangle Quality: we compute the median aspect
ratio of the faces per mesh (and average upon that). Aspect ratio
is defined as the ratio between circumcircle radius over twice the
inner radius of the triangle. Self Intersections: we count the number
of faces intersecting with others and divide by the total amount
of faces. We deducted from the calculation any face that intersects
with another which can be trivially resolved by adding epsilon to
its vertices locations in the direction of their normals. These type
of self intersections are common when the target exhibits large flat
thin areas. Non Manifold Edges: average number of edges which
have more than 2 incident faces. Non Manifold Vertices: average
number of vertices where the link is not a single loop of edges [13].

1.2 Additional Hyper Parameters
An exhaustive list of thresholds and hyper parameters used for
ROAR are detailed below. We fixed them for all experiments except
when explicitly mentioned otherwise (for ablations).

• Image resolution - we used a 512𝑥512 resolution for all ren-
derings of the objects.

• Face removal threshold for initialization - after rendering 36
views of the target, faces that have a pixel count of less than
80 times their twin are removed. This faces are duplicated
faces that face inwards, and hence can be filtered out.

• Number of sampling points - we use up to 200k points for
sampling the target mesh in the Mesh Preprocessing step.

• Face split amount, or supersamples per face - we set the
number of super samples per face to be proportional to its
area divided by 0.2% of the diagonal size of the bounding box
of the mesh (defined as delta in the original paper [3]). We
do not allow the amount to go beyond a value of 420.

• Face split score threshold - for face splitting, we filter out
candidates to split who don’t meet a minimum score of 0.02

• Tangential smoothing threshold - when performing tangen-
tial smoothing, we do not smooth vertices which have their

absolute normal size smaller than 0.98. This avoids moving
vertices on very sharp spikes or edges of a shape, facilitating
the triangulation to align to crease angles.

• Number of neighbors for projection loss support - we used
10 neighbors to compute the projection loss.

• Collapse Face threshold - we increased the slack of the self-
intersection estimator 𝑛𝑣 · 𝑛𝑓 < 0 by adding 𝛿 = 0.6 to the
RHS, which allows more faces to be considered for collapse.

• Collapse Face normal threshold - we set a threshold that
removes candidates from being collapsed when their abso-
lute normal size is smaller than 0.98 (similar reason to the
tangential smoothing threshold).

• Number of viewpoints - We used 36 different views for ren-
dering the target and source mesh used to compute the render
loss.

• Dihedral angle threshold for edge flips - we set a threshold
to prevent edges with a small dihedral angle (0.95) from flip-
ping during this step, again due to the same sharp feature
reasoning.

• Collapse Face quality threshold - before collapsing an edge
of a face, we check if the resulting triangles quality is worse
than 5, and remove candidates that don’t meet this threshold.
We also check if the normals of the result are flipped and
remove candidates for which this condition is met.

• Beam angle horizon - half of the beam sweep angle. Defined
relative to a given central vector (10◦).

• Number of beam rays in azimutal direction - number of rays
in the azimuth direction (4).

• Number of beam rays in elevation direciton - number of of
rays in the azimuth direction (3).

1.3 Hyper Parameters for Other Methods
Parameters used to apply other methods were selected by trial
and error to yield good performance, and are described below. For
Manifold and Manifold+ [10; 11], all default parameters were used.
For Continuous Remeshing [15], we converted the original scheme
to use flat shade rendering and benefit from higher quality gradients
when dealing with triangle soups. For TetWild and fTetWild [8? ],
we used all default parameters, but extract the boundary surface
from the result. For [14] we used default parameters. For [7] we
used 6000 iterations and pooling layers of 0.1, 0.0, 0.0, 0.0, which are
the parameters used for their Bull example. For Screened Poisson
[12], we used the implementation provided by MeshLab [5], with
a depth of 8. For Alpha Wrapping [2], we used an alpha value
of 300 and offset of 1000. For any instance of QSLIM [6] used as
decimation, we used the MeshLab [5] implementation with default
parameters, except the "preserve topology" and "preserve normals"
options which were turned on.

1.4 Face Split Further Detail
As mentioned, we project using an approximate sampling scheme.
Its performance relative to the full point-to-mesh projection can be
seen in Figure 1.
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Fig. 1. Planar Projection Approximation: we sample points randomly on the
surface of the target mesh, and approximate pointcloud-to-mesh projection
using nearest neighbors. for 50k samples, we converge to the pointcloud-to-
mesh projection for face budgets of up to 100k, with a significant speedup

.

2 IMPROVED SAMPLING OF TRIANGLE SOUP
FEATURES

Since both face splitting and the planar projection loss approximate
a true projection using k-NN sampling, we benefit from having a
denser sampling at sharp edges. The problem is that these edges
can not be detected on triangle soups, due to noisy topology. We
overcome this by sampling sharp edges on the initial mesh generated
by MANIFOLD [10] and projecting them back to the target mesh.
The samples are drawn randomly from all the edges for which the
absolute value of dot product of the incident face normals is lower
than 0.5. This procedure captures the "outline" of the triangle soup
(2). We added 30k such points to our cleaned point cloud.

Fig. 2. Some sampling results using our procedure to sample sharp edges
on the triangle soups

.

2.1 Failures
Table 1 sums up the percentage of meshes that weren’t used for
metric calculations and the average time it took to process each
mesh for all methods. Note that for Ours, Manifold and Manifold+,
"failures" consisted of the post process decimation algorithm imple-
mentation [5] failing to decimate to the proper face budget with
settings that do not permit change in topology. In terms of the
methods themselves there were 0 failures. For Tet-Wild, failures are
due to being unable to converge and for Point2Mesh, exceeding a
reasonable reconstruction time of 30 minutes.

Iterations

Fig. 3. Time lapse. Given a certain face budget (25k) and starting from a
subdivided sphere, we observed that reaching the target face budget is not
a good criterion for termination, as the loss continues to decrease due to
topology refinements

.

Table 1. Failure Percent and Average Running Times for comparisons over
550 meshes (10 per class) in ShapenetCoreV2.

Method Fail %
Face Budget 500/1k/5k/10k

Avg. Running
Time (s)

Ours 10/6.2/0.5/0 120
Manifold [10] 5.6/2.7/0.18/0 1.2
Manifold+ [11] 8.0/4.4/0/0 4.5

Continuous Remeshing [15] 0 60
Tet-Wild [9] 3.2 271
fTet-Wild [8] 0 90
RIMLS [14] 0 78

Point2Mesh [7] 63* 1625
Screened Poisson [12] 0 11
3D Alpha Wrapping [2] 0 22

* Fails due to forced termination after a 30 minutes timeout was reached.

2.2 Face Budget and Post-Process
We conducted two experiments to evaluate the effects of the face
budget limit on results versus performing decimation to the face
budget as a post process step (Figure 4). Image loss was signifi-
cantly lower when performing post process decimation as opposed
to directly optimizing towards a face budget (and never passing it).
Experiments were performed over 11 high resolution meshes men-
tioned in Section 4.1. Another important aspect of the face budget is
whether reaching it can be used as a good termination criterion for
optimization (assuming the initial source mesh has low resolution).
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We tested this (see Figure 3) and found that the loss keeps decreasing
even after reaching the target budget for a non-negligible amount
of iterations. This might suggest further optimization of scheduling
the blocks can improve results.

3 NEURAL SDF RECONSTRUCTION IMPLEMENTATION
DETAILS

For all the experiments, the same hyper parameters were used to
perform reconstruction of neural SDFs: for initialization, we used
a simple voxelization scheme using a coarse 64𝑥64𝑥64 grid and
declaring samples inside the shape when 𝑆𝐷𝐹 (𝑥) < 0. We ran
ROAR for 700 iterations of optimization with the full reconstruction
pipeline turned on, and a face budget of 50k faces. We introduce the
SDF projection loss after 500 iterations multiplied by a coefficient
of 0.1. All other settings were kept at default (Section 1).
Since the 3D meshes that were used to create the BlendedMVS

dataset are given in files that describe only the geometry of the
object, and not the stage it is placed upon, and because the neural
SDFmodels did in fact capture the stage, it was necessary to separate
them for computation of Chamfer distance from the ground truth.
To this end, we defined 2D planes that were placed between the
object and the stage for all scans, and sliced both our result and the
Marching Cubes results using the planes such that triangles with all
vertices below the planes were discarded. We then decimated the
marching cubes results until it had 50k triangles for fair comparison
and sampled it as described in the main paper. We confirmed with
the authors of Yariv et al. [17] that this process was done in their
computation of the Chamfer distance as well.

Fig. 4. Face Budget. Given a face budget, we tested the difference between
optimizing towards it directly versus optimizing towards a much higher
budget and decimating the result a post process step [6]. We observed the
more relaxed approach (which allows going beyond the required budget)
yields better results.

4 RANGE SCAN RECONSTRUCTION
IMPLEMENTATION DETAILS

Results of reconstruction can be seen in Figure 5. Scans were con-
verted into patches (triangular meshes with holes) by connecting
nearest neighbors in the scan and triangulating the resulting grid.
We eliminate any triangle from the patch for which the angle be-
tween the view angle it was captured from and its normal are larger
than a threshold to reduce sampling noise. For each object, multiple
such patches exist so they were aligned using an ICP variant [5]
initialized by the provided transformations. Aligned patches were
rendered "as is", with no further adjustments.

Aligned Scans Target Render Reconstruction

Fig. 5. Range Scans Reconstruction. Despite missing data and render arti-
facts of the aligned raw scans, we manage to reconstruct a fairly accurate
shape from the target renders.

4.1 Datasets Details
We used the [4] dataset for most of the analysis, and 9 scans from
[16]. Additionally, we used the following 3D meshes for the ablation
study: Bunny, Armadillo, Dragon, Fandisk, Lucy, Nefertiti, Horse,
Smilodon [15], Thundercrab (ID:133582)[18], Deer (ID:921798)[18],
Engine(ID:669972)[18], Camel (ID:482274)[1].
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